skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Xinying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. The Kirchhoff law is one of the most widely used physical laws in many engineering principles, e.g., biomedical engineering, electrical engineering, and computer engineering. One challenge of applying the Kirchhoff law to real-world applications at scale lies in the high, if not prohibitive, computational cost to solve a large number of nonlinear equations. Despite recent advances in leveraging a convolutional neural network (CNN) to estimate the solutions of Kirchhoff equations, the low performance is still significantly hindering the broad adoption of CNN-based approaches. This paper proposes a high-performance deep-learning-based approach for Kirchhoff analysis, namely HDK. HDK employs two techniques to improve the performance: (i) early pruning of unqualified input candidates and (ii) parallelization of forward labelling. To retain high accuracy, HDK also applies various optimizations to the data such as randomized augmentation and dimension reduction. Collectively, the aforementioned techniques improve the analysis speed by 8 with accuracy as high as 99.6%. 
    more » « less
  3. Best student paper award. 
    more » « less